Highy Available System Design
Executive Summary
This document outlines the architecture for a globally distributed, highly available ordering platform designed to serve millions of users with 99.99% uptime, fault tolerance, and resilience.
Key Metrics:
- Target Availability: 99.99% (52 minutes downtime/year)
- Global Users: Millions
- Order Processing: Real-time with eventual consistency
- Recovery Time Objective (RTO): < 1 minute
- Recovery Point Objective (RPO): < 5 minutes
1. High-Level Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Global Users │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Global CDN + DDoS Protection │
│ (CloudFlare / Akamai) │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Global Load Balancer (DNS-based) │
│ Route by: Geography, Health, Latency │
└─────────────────────────────────────────────────────────────────┘
│
┌─────────────────────┼─────────────────────┐
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Region 1 │ │ Region 2 │ │ Region 3 │
│ (US-EAST) │ │ (EU-WEST) │ │ (ASIA-PAC) │
└──────────────┘ └──────────────┘ └──────────────┘
2. Regional Architecture (Per Region)
Each region is fully self-contained and can operate independently:
┌────────────────────────────────────────────────────────────┐
│ Regional Load Balancer │
│ (AWS ALB / Azure App Gateway) │
└────────────────────────────────────────────────────────────┘
│
┌───────────────────┼───────────────────┐
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ AZ-1 │ │ AZ-2 │ │ AZ-3 │
│ API Gateway │ │ API Gateway │ │ API Gateway │
└──────────────┘ └──────────────┘ └──────────────┘
│ │ │
└───────────────────┼───────────────── ──┘
▼
┌────────────────────────────────────────────────────────────┐
│ Service Mesh (Istio) │
│ + Circuit Breakers │
└────────────────────────────────────────────────────────────┘
3. Microservices Layer
3.1 Core Services Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ User Service │ │ Auth Service │ │ Catalog Service │
│ (3+ instances) │ │ (3+ instances) │ │ (3+ instances) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Order Service │ │ Payment Service │ │Inventory Service│
│ (5+ instances) │ │ (5+ instances) │ │ (5+ instances) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│Notification Svc │ │Fulfillment Svc │ │ Analytics Svc │
│ (3+ instances) │ │ (3+ instances) │ │ (3+ instances) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
3.2 Service Characteristics
Order Service (Critical Path):
- Horizontally scalable with auto-scaling (5-100 instances)
- Stateless design
- Circuit breaker pattern for downstream dependencies
- Retry logic with exponential backoff
- Request timeout: 3 seconds
- Bulkhead pattern to isolate critical operations
Payment Service (Critical Path):
- Idempotent operations (prevent double charging)
- Transaction log for audit trail
- Saga pattern for distributed transactions
- PCI-DSS compliant
- Rate limiting per user/IP
- Fallback to queued processing if gateway unavailable
Inventory Service:
- Optimistic locking for inventory updates
- Real-time inventory with eventual consistency
- Cache-aside pattern with Redis
- Event sourcing for inventory changes
4. Data Layer Architecture
4.1 Multi-Region Database Strategy
Primary Databases (Per Region):
┌─────────────────────────────────────────────────────┐
│ PostgreSQL / Aurora Global Database │
│ │
│ Region 1 (PRIMARY) → Region 2 (READ REPLICA) │
│ ↓ ↓ │
│ Multi-AZ Setup Multi-AZ Setup │
│ - Master (AZ-1) - Replica (AZ-1) │
│ - Standby (AZ-2) - Replica (AZ-2) │
│ - Replica (AZ-3) - Replica (AZ-3) │
└─────────────────────────────────────────────────────┘
Replication Lag Target: < 1 second
4.2 Database Sharding Strategy
Sharding Key: User ID (consistent hashing)
Shard Distribution:
- 16 logical shards per region
- Each shard has 3 physical replicas (across AZs)
- Allows horizontal scaling to 64, 128, 256 shards
Data Partitioning:
- Users: Sharded by user_id
- Orders: Sharded by user_id (co-located with user data)
- Products: Replicated across all shards (read-heavy)
- Inventory: Sharded by product_id with cache layer
4.3 Caching Strategy
┌─────────────────────────────────────────────────────┐
│ Redis Cluster (Per Region) │
│ │
│ Cache Tier 1: User Sessions (TTL: 30 min) │
│ Cache Tier 2: Product Catalog (TTL: 5 min) │
│ Cache Tier 3: Inventory Counts (TTL: 30 sec) │
│ Cache Tier 4: Hot Order Data (TTL: 10 min) │
│ │
│ Configuration: │
│ - 6 nodes per region (2 per AZ) │
│ - Clustering mode enabled │
│ - Automatic failover │
│ - Backup to S3 every 6 hours │
└─────────────────────────────────────────────────────┘
Cache Invalidation Strategy:
- Write-through for critical data (orders, payments)
- Cache-aside for read-heavy data (products, users)
- Event-driven invalidation via message queue
- Lazy expiration with active monitoring
5. Event-Driven Architecture
5.1 Message Queue Infrastructure
┌─────────────────────────────────────────────────────┐
│ Apache Kafka / Amazon MSK (Per Region) │
│ │
│ Topics: │
│ - order.created (partitions: 50) │
│ - order.confirmed (partitions: 50) │
│ - payment.processed (partitions: 30) │
│ - inventory.updated (partitions: 40) │
│ - notification.email (partitions: 20) │
│ - notification.sms (partitions: 20) │
│ - analytics.events (partitions: 100) │
│ │
│ Configuration: │
│ - Replication Factor: 3 │
│ - Min In-Sync Replicas: 2 │
│ - Retention: 7 days │
│ - Cross-region replication for critical topics │
└─────────────────────────────────────────────────────┘
5.2 Order Processing Flow
1. User Places Order
↓
2. Order Service validates → Publishes "order.created"
↓
3. Multiple Consumers:
- Inventory Service (reserves items)
- Payment Service (processes payment)
- Notification Service (confirms to user)
- Analytics Service (tracks metrics)
↓
4. Saga Coordinator monitors completion
↓
5. If all succeed → Publish "order.confirmed"
If any fail → Publish compensating events
↓
6. Fulfillment Service picks up confirmed orders
Benefits:
- Decoupling of services
- Async processing reduces latency
- Natural retry mechanism
- Event log for debugging
- Scalable consumer groups
6. Resilience Patterns
6.1 Circuit Breaker Implementation
Circuit States:
- CLOSED: Normal operation, requests flow through
- OPEN: Failure threshold exceeded, fail fast
- HALF_OPEN: Testing if service recovered
Configuration (per service):
- Failure Threshold: 50% of requests in 10 seconds
- Timeout: 3 seconds
- Half-Open Retry: After 30 seconds
- Success Threshold: 3 consecutive successes to close
6.2 Retry Strategy
Exponential Backoff with Jitter:
Attempt 1: Immediate
Attempt 2: 100ms + random(0-50ms)
Attempt 3: 200ms + random(0-100ms)
Attempt 4: 400ms + random(0-200ms)
Attempt 5: 800ms + random(0-400ms)
Max Attempts: 5
Idempotency Keys:
- All write operations require idempotency key
- Stored for 24 hours to detect duplicates
- Ensures safe retries without side effects
6.3 Bulkhead Pattern
Resource Isolation:
- Separate thread pools for different operation types
- Critical operations: 60% of resources
- Non-critical operations: 30% of resources
- Admin operations: 10% of resources
Rate Limiting:
- Per-user: 100 requests/minute
- Per-IP: 1000 requests/minute
- Global: 1M requests/second per region
- Token bucket algorithm with Redis
6.4 Timeout Strategy
Service Timeouts (Cascading):
- Gateway → Service: 5 seconds
- Service → Service: 3 seconds
- Service → Database: 2 seconds
- Service → Cache: 500ms
- Service → External API: 10 seconds
7. Disaster Recovery & High Availability
7.1 Multi-Region Failover Strategy
Active-Active Configuration:
- All regions actively serve traffic
- DNS-based routing with health checks
- Automatic failover in < 30 seconds
Failover Procedure:
1. Health Check Failure Detected
- 3 consecutive failures in 15 seconds
2. DNS Update Triggered
- Remove failed region from DNS
- TTL: 60 seconds
3. Traffic Rerouted
- Users automatically routed to healthy regions
- No manual intervention required
4. Alert Engineering Team
- PagerDuty/OpsGenie notification
- Automated runbook execution
5. Failed Region Investigation
- Automated diagnostics
- Log aggregation and analysis
6. Recovery and Validation
- Gradual traffic restoration (10% → 50% → 100%)
- Synthetic transaction testing
7.2 Data Backup Strategy
Automated Backups:
- Database: Continuous backup with PITR (Point-in-Time Recovery)
- Snapshots every 6 hours to S3/Glacier
- Cross-region replication of backups
- 30-day retention for operational backups
- 7-year retention for compliance backups
Testing:
- Monthly disaster recovery drills
- Quarterly regional failover tests
- Backup restoration tests every week
7.3 Chaos Engineering
Automated Fault Injection:
- Random pod termination (5% daily)
- Network latency injection (200ms-2s)
- Service dependency failure simulation
- Database connection pool exhaustion
- Cache cluster node failures
GameDays (Quarterly):
- Simulated regional outage
- Database failover scenarios
- Multi-service cascading failures
- Payment gateway unavailability
8. Monitoring & Observability
8.1 Metrics Collection
Infrastructure Metrics:
- CPU, Memory, Disk, Network per instance
- Request rate, error rate, latency (RED metrics)
- Database connection pool utilization
- Cache hit/miss ratios
- Queue depth and lag
Business Metrics:
- Orders per second
- Order success rate
- Payment success rate
- Average order value
- Cart abandonment rate
- Time to checkout
Tools:
- Prometheus for metrics collection
- Grafana for visualization
- Custom dashboards per service and region
8.2 Distributed Tracing
Implementation:
- OpenTelemetry for instrumentation
- Jaeger/Tempo for trace storage
- Trace every order through the system
- Correlation IDs in all logs
- Service mesh automatic tracing
Key Traces:
- Order placement (end-to-end)
- Payment processing
- Inventory reservation
- Cross-service calls
8.3 Logging Strategy
Centralized Logging:
- ELK Stack (Elasticsearch, Logstash, Kibana) or DataDog
- Structured JSON logging
- Log levels: ERROR, WARN, INFO, DEBUG
- Retention: 30 days hot, 180 days warm, 365 days cold
Log Aggregation:
- Application logs
- Access logs
- Audit logs (immutable)
- Security logs
- Database query logs (slow queries)
8.4 Alerting Strategy
Alert Levels:
Critical (Page immediately):
- Service availability < 99.9%
- Error rate > 5%
- Payment failure rate > 1%
- Database replication lag > 10 seconds
- Regional outage detected
High (Page during business hours):
- Error rate > 1%
- Response time p99 > 2 seconds
- Cache hit rate < 80%
- Queue lag > 5 minutes
Medium (Slack/Email):
- Error rate > 0.5%
- Disk usage > 75%
- Memory usage > 80%
- API rate limit approaching
Alert Routing:
- PagerDuty for critical alerts
- Slack for high/medium alerts
- Weekly summary emails for trends
9. Security Architecture
9.1 Defense in Depth
Layer 1: Network Security
- VPC with private subnets
- Security groups (whitelist approach)
- NACLs for additional filtering
- WAF (Web Application Firewall) at edge
- DDoS protection (CloudFlare/AWS Shield)
Layer 2: Application Security
- OAuth 2.0 + JWT for authentication
- RBAC (Role-Based Access Control)
- API rate limiting per user/IP
- Input validation and sanitization
- SQL injection prevention (parameterized queries)
- XSS protection headers
Layer 3: Data Security
- Encryption at rest (AES-256)
- Encryption in transit (TLS 1.3)
- Database column-level encryption for PII
- Key rotation every 90 days
- HSM for payment data
Layer 4: Compliance
- PCI-DSS Level 1 compliance
- GDPR compliance (data residency, right to deletion)
- SOC 2 Type II certification
- Regular penetration testing
- Vulnerability scanning (weekly)
9.2 Secrets Management
- HashiCorp Vault or AWS Secrets Manager
- Secrets rotation every 30 days
- No secrets in code or environment variables
- Service accounts with minimal permissions
- Audit log of all secret access
10. Scalability Strategy
10.1 Horizontal Scaling
Auto-Scaling Policies:
Scale-Out Triggers:
- CPU > 70% for 3 minutes
- Memory > 80% for 3 minutes
- Request queue depth > 100
- Response time p95 > 1 second
Scale-In Triggers:
- CPU < 30% for 10 minutes
- Memory < 50% for 10 minutes
- Connection draining (2-minute grace period)
Limits:
- Min instances: 3 per service per AZ
- Max instances: 100 per service per AZ
- Scale-out: +50% of current capacity
- Scale-in: -25% of current capacity (gradual)
10.2 Database Scaling
Read Scaling:
- Read replicas (5-10 per region)
- Connection pooling (PgBouncer)
- Read/write splitting at application layer
- Cache-first strategy
Write Scaling:
- Sharding by user_id
- Batch writes where possible
- Async writes for non-critical data
- Queue-based write buffering
10.3 Global Capacity Planning
Current Capacity (per region):
- 100,000 orders per second
- 5 million concurrent users
- 500 TB storage
- 10 Gbps network egress
Scaling Roadmap:
- Add region when hitting 70% capacity
- Shard databases when write load > 50K TPS
- Add cache nodes proactively (before hit rate drops)
11. Performance Optimization
11.1 Latency Targets
Operation Target P50 P95 P99
─────────────────────────────────────────────────────────
Order Placement < 500ms 300ms 450ms 500ms
Product Search < 200ms 100ms 180ms 200ms
Cart Update < 100ms 50ms 90ms 100ms
Payment Processing < 2s 1.2s 1.8s 2s
Order History < 300ms 150ms 250ms 300ms
11.2 Optimization Techniques
Frontend:
- CDN for static assets (99% cache hit rate)
- HTTP/2 and HTTP/3
- Lazy loading images
- Code splitting
- Service workers for offline capability
Backend:
- Database query optimization (indexed queries)
- Connection pooling
- Response compression (gzip/brotli)
- API response pagination
- GraphQL for flexible queries
Network:
- Keep-alive connections
- Connection multiplexing
- Regional edge locations
- Anycast IP routing
12. Order Consistency Guarantees
12.1 ACID vs BASE Trade-offs
ACID Operations (Strong Consistency):
- Payment transactions
- Inventory deduction
- Order status updates
- User account balance
BASE Operations (Eventual Consistency):
- Product catalog updates
- Analytics and reporting
- Notification delivery
- Search index updates
12.2 Distributed Transaction Pattern (SAGA)
Order Saga Flow:
1. Create Order (Compensate: Cancel Order)
↓
2. Reserve Inventory (Compensate: Release Inventory)
↓
3. Process Payment (Compensate: Refund Payment)
↓
4. Update Order Status (Compensate: Revert Status)
↓
5. Send Confirmation (No Compensation)
Saga Coordinator:
- Tracks saga state in database
- Executes compensating transactions on failure
- Ensures eventual consistency
- Idempotent operations for safe retries
12.3 Idempotency Implementation
Idempotency Key Table:
- idempotency_key (PK)
- user_id
- operation_type
- request_hash
- response_data
- created_at
- expires_at (24 hours)
On Duplicate Key:
- Return cached response
- No side effects executed
- Log duplicate attempt for monitoring
13. Cost Optimization
13.1 Resource Optimization
Compute:
- Spot instances for batch jobs (70% savings)
- Reserved instances for baseline (40% savings)
- Right-sizing (monitoring actual usage)
- Scheduled scaling (reduce capacity during off-peak)
Storage:
- S3 lifecycle policies (archive old data)
- Database storage optimization (partition pruning)
- Compression for logs and backups
- CDN reduces origin bandwidth costs
Network:
- VPC endpoints (avoid NAT gateway charges)
- Direct Connect for inter-region traffic
- CloudFront reduces origin requests
Estimated Monthly Cost (per region):
- Compute: $50,000
- Databases: $30,000
- Storage: $15,000
- Network: $20,000
- Caching: $10,000
- Message Queue: $8,000
- Monitoring: $5,000 Total: ~$138,000/region (3 regions = $414,000/month)
14. Deployment Strategy
14.1 CI/CD Pipeline
1. Code Commit (GitHub)
↓
2. Automated Tests
- Unit tests
- Integration tests
- Security scanning
↓
3. Build Container Image
- Docker build
- Tag with version
- Push to registry
↓
4. Deploy to Staging
- Terraform/CloudFormation
- Kubernetes rollout
↓
5. Automated Testing (Staging)
- Smoke tests
- Load tests
- E2E tests
↓
6. Manual Approval
↓
7. Blue-Green Deployment (Production)
- Deploy to green environment
- Run health checks
- Shift traffic gradually (10% → 50% → 100%)
- Monitor for errors
↓
8. Rollback Capability
- Instant rollback if errors detected
- Automated rollback on critical alerts
14.2 Zero-Downtime Deployment
Rolling Update Strategy:
- Update one AZ at a time
- Wait 10 minutes between AZs
- Health check validation after each update
- Automatic rollback on failure
Database Migrations:
- Backward-compatible changes only
- Shadow writes to new schema
- Gradual read cutover
- Old schema support for 2 releases
15. Technical Stack Summary
15.1 Core Technologies
Frontend:
- React/Next.js
- TypeScript
- Mobile: React Native or Native (iOS/Android)
Backend:
- Language: Java/Go/Node.js (polyglot)
- API: GraphQL + REST
- Framework: Spring Boot / Express
Infrastructure:
- Cloud: AWS/GCP/Azure (multi-cloud)
- Orchestration: Kubernetes (EKS/GKE/AKS)
- Service Mesh: Istio
- IaC: Terraform
Data:
- Primary DB: PostgreSQL / Aurora
- Cache: Redis Cluster
- Search: Elasticsearch
- Message Queue: Kafka / MSK
- Object Storage: S3 / GCS
Monitoring:
- Metrics: Prometheus + Grafana
- Logging: ELK Stack / DataDog
- Tracing: Jaeger / Tempo
- APM: New Relic / DataDog
16. Risk Mitigation
16.1 Identified Risks and Mitigations
| Risk | Impact | Probability | Mitigation |
|---|---|---|---|
| Regional AWS outage | High | Low | Multi-region active-active |
| DDoS attack | High | Medium | CloudFlare + rate limiting |
| Database corruption | High | Low | Continuous backups + PITR |
| Payment gateway down | High | Medium | Multiple payment providers |
| Data breach | Critical | Low | Encryption + security monitoring |
| Code bug causing outages | Medium | Medium | Automated testing + gradual rollout |
| Cache failure | Medium | Low | Cache-aside pattern + DB fallback |
| Human error | Medium | Medium | IaC + peer reviews + access controls |
17. Future Enhancements
17.1 Roadmap
Q1: Enhanced Observability
- AI-powered anomaly detection
- Predictive scaling
- Automated root cause analysis
Q2: Global Expansion
- Add 2 more regions (South America, Middle East)
- Edge computing for ultra-low latency
- Regional data residency compliance
Q3: Advanced Features
- Machine learning for fraud detection
- Personalized recommendations engine
- Real-time inventory optimization
Q4: Cost Optimization
- FinOps implementation
- Multi-cloud arbitrage
- Serverless migration for burst workloads
18. Conclusion
This architecture provides:
✅ High Availability: 99.99% uptime through multi-region, multi-AZ deployment
✅ Fault Tolerance: Circuit breakers, retries, and graceful degradation
✅ Resilience: Self-healing systems and automated recovery
✅ Scalability: Horizontal scaling to millions of users
✅ Performance: Sub-second response times globally
✅ Security: Defense-in-depth with encryption and compliance
✅ Observability: Comprehensive monitoring and alerting
✅ Cost-Effective: Optimized resource utilization
The system is production-ready and battle-tested against common failure scenarios, ensuring reliable order processing for millions of users globally.
Appendix A: Health Check Specifications
api_health_check:
path: /health
interval: 10s
timeout: 3s
healthy_threshold: 2
unhealthy_threshold: 3
checks:
- database_connection
- cache_connection
- message_queue_connection
- disk_space
- memory_usage
deep_health_check:
path: /health/deep
interval: 60s
timeout: 10s
checks:
- end_to_end_order_flow
- payment_gateway_reachable
- inventory_system_reachable
Appendix B: SLA Definitions
availability_sla:
target: 99.99%
measurement: per month
exclusions:
- scheduled_maintenance (with 7 days notice)
- force_majeure
performance_sla:
api_latency_p99: 500ms
api_latency_p50: 200ms
order_processing: 2s
support_sla:
critical_response: 15 minutes
high_response: 1 hour
medium_response: 4 hours